Analyticity of intersection exponents for planar Brownian motion

نویسندگان

  • Gregory F. Lawler
  • Oded Schramm
  • Wendelin Werner
چکیده

We show that the intersection exponents for planar Brownian motions are analytic. More precisely, let B and B′ be independent planar Brownian motions started from distinct points, and define the exponent ξ(1, λ) by E [ P [ B[0, t] ∩B[0, t] = ∅ ∣∣ B[0, t] ]λ ] ≈ t, t → ∞. Then the mapping λ 7→ ξ(1, λ) is real analytic in (0,∞). The same result is proved for the exponents ξ(k, λ) where k is a positive integer. In combination with the determination of ξ(k, λ) for integer k ≥ 1 and real λ ≥ 1 in our previous papers, this gives the value of ξ(k, λ) also for λ ∈ (0, 1) and the disconnection exponents limλց0 ξ(k, λ). In particular, it shows that limλց0 ξ(2, λ) = 2/3 and concludes the proof of the following result that had been conjectured by Mandelbrot: the Hausdorff dimension of the outer boundary of B[0, 1] is 4/3 almost surely.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp estimates for Brownian non-intersection probabilities

This paper gives an accessible (but still technical) self-contained proof to the fact that the intersection probabilities for planar Brownian motion are given in terms of the intersection exponents, up to a bounded multiplicative error, and some closely related results. While most of the results are already known, the proofs are somewhat new, and the paper can serve as a source for the estimate...

متن کامل

Intersection Exponents for Planar Brownian Motion

We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.

متن کامل

Values of Brownian intersection exponents II: Plane exponents

We derive the exact value of intersection exponents between planar Brownian motions or random walks, confirming predictions from theoretical physics by Duplantier and Kwon. Let B and B′ be independent Brownian motions (or simple random walks) in the plane, started from distinct points. We prove that the probability that the paths B[0, t] and B′[0, t] do not intersect decays like t−5/8. More pre...

متن کامل

Values of Brownian intersection exponents I: Half-plane exponents

This paper proves conjectures originating in the physics literature regarding the intersection exponents of Brownian motion in a halfplane. For instance, suppose that B and B′ are two independent planar Brownian motions started from distinct points in a half-plane H. Then as t → ∞,

متن کامل

Values of Brownian intersection exponents III: Two-sided exponents

This paper determines values of intersection exponents between packs of planar Brownian motions in the half-plane and in the plane that were not derived in our first two papers. For instance, it is proven that the exponent ξ(3, 3) describing the asymptotic decay of the probability of nonintersection between two packs of three independent planar Brownian motions each is (73 − 2 √ 73)/12. More ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000